Dynamic Conic Finance via Backward Stochastic Difference Equations
نویسندگان
چکیده
We present an arbitrage free theoretical framework for modeling bid and ask prices of dividend paying securities in a discrete time setup using theory of dynamic acceptability indices. In the first part of the paper we develop the theory of dynamic subscale invariant performance measures, on a general probability space, and discrete time setup. We prove a representation theorem of such measures in terms of a family of dynamic convex risk measures, and provide a representation of dynamic risk measures in terms of g-expectations, and solutions of BS∆Es with convex drivers. We study the existence and uniqueness of the solutions, and derive a comparison theorem for corresponding BS∆Es. In the second part of the paper we discuss a market model for dividend paying securities by introducing the pricing operators that are defined in terms of dynamic acceptability indices, and find various properties of these operators. Using these pricing operators, we define the bid and ask prices for the underlying securities and then for derivatives in this market. We show that the obtained market model is arbitrage free, and we also prove a series of properties of these prices.
منابع مشابه
Dynamic programming approach to principal-agent problems
We consider a general formulation of the Principal-Agent problem with a lump-sum payment on a finite horizon. Our approach is the following: we first find the contract that is optimal among those for which the agent’s value process allows a dynamic programming representation and for which the agent’s optimal effort is straightforward to find. We then show that, under technical conditions, the o...
متن کاملBackward stochastic difference equations for dynamic convex risk measures on a binomial tree
Using backward stochastic difference equations (BSDEs), this paper studies dynamic convex risk measures for risky positions in a simple discretetime, binomial tree model. A relationship between BSDEs and dynamic convex risk measures is developed using nonlinear expectations. The time consistency of dynamic convex risk measures is discussed in the binomial tree framework. A relationship between ...
متن کاملFully Coupled Forward-backward Stochastic Differential Equations and Applications to Optimal Control
Existence and uniqueness results of fully coupled forward-backward stochastic differential equations with an arbitrarily large time duration are obtained. Some stochastic Hamilton systems arising in stochastic optimal control systems and mathematical finance can be treated within our framework.
متن کاملStability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type
This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...
متن کاملFeasibility study of presenting a dynamic stochastic model based on mixed integer second-order conic programming to solve optimal distribution network reconfiguration in the presence of resources and demand-side management
Nowadays, with the use of devices such as fossil distributed generation and renewable energy resources and energy storage systems that are operated at the level of distribution networks, the problem of optimal reconfiguration has faced major challenges, so any change in the power of this resources can have different results in reconfiguration. Similarly, load changes during the day can lead to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Financial Math.
دوره 6 شماره
صفحات -
تاریخ انتشار 2015